

 Navigation

 	
 index

 	
 next |

 	eestec.portal 0.1 documentation

EESTEC.net Plone portal

	Framework:	Plone 4.2 [http://plone.org]

	Bug tracker:	https://github.com/eestec/eestec.portal/issues

	Source:	https://github.com/eestec/eestec.portal

	Documentation:	http://eestecportal.readthedocs.org/

	Code status:	[image: http://travis-ci.org/eestec/eestec.portal.png]
 [http://travis-ci.org/eestec/eestec.portal]

Summary

EESTEC.net portal is the main hub for managing of EESTEC Events (workshops,
exchanges, etc.), applications to these event, managing Local Committees,
managing public content (news, PR, etc.) and an online collaboration space
for EESTECers.

Make sure you read the
install instructions [http://eestecportal.readthedocs.org/en/latest/dev/local.html]
before attempting to run buildout or at least check the list of
prerequisites [http://eestecportal.readthedocs.org/en/latest/dev/local.html#prerequisites].

Table of Contents

	Definitions of basic terms
	EESTEC

	Technical

	Technical Specification
	Rules and Assumptions

	Use case

	Content Structure

	Class diagram

	Workflows

	Developers Guide
	Conventions

	Local development environment

	Remote development environment

	Staging environment

	Production environment

	Tips & tricks

	Source documentation

Changelog

0.1 (unreleased)

	Memberdata fields.
[fakedrake]

	Event and EventApplication content types.
[iElectric]

	LC content type and forms.
[ibi, brodul, andrejpan]

	Theme skeleton.
[vilmoss]

	Bootstraping the package.
[iElectric, zupo]

License (3-clause BSD)

Copyright (c) 2012, EESTEC International.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of EESTEC International nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL EESTEC INTERNATIONAL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

Definitions of basic terms

EESTEC

Terms that appear in the general EESTEC context and can help understand context
and use-cases behind the code in eestec.portal package.

	Member of EESTEC International

	A member of EESTEC is always an association.

	LC (Local Committee)

	An association the General Assembly of EESTEC has accepted as a full
member. Must organize international events and has a vote in the General
Assembly. They can freely apply for all events.

	JLC (Junior Local Committee)

	In this membership level the association must be registered. They have
an obligation to try to hold an international event within two years or
they will be demoted. They do not have a vote in General Assembly.
Promotion to this status is handled by the General Assembly. They can
freely apply for all events.

	Observer

	In this membership level the association must be organized. They should
register within two years or they are automatically demoted. They do not
have a vote in the general assembly. They are promoted to this status by
the international Board. They can freely apply for all events.

	Observer Candidate

	Any interested party can apply for this status from the international
Board. They can apply for events with the acceptal of VC-EA.

	Organizer

	An LC that is organizing an event.

	CP (Contact Person)

	The person in an LC which handles communcation between local level and
international level.

	VC-IA (Vice Chairperson for Internal Affairs)

	The person in the international Board who is responsible for staying
bidirectionally in touch with EESTEC member organizations (ie. LCs)

	VC-EA (Vice Chairperson for External Affairs)

	The person in the international Board who is responsible for staying in
contact with partner organizations and expansion of EESTEC.

	International Board

	The board to run practical level tasks. Elected by GA in every Congress.
The term of the board is from Congress to Congress.

	Local Board

	The board of a member organization (ie. an LC).

	Event

	An event held by a member organization (ie. an LC) into which people
from other member organizations can apply.

	Event Application Deadline

	Deadline until members of member organizations (ie. LCs) can apply for
an event.

Technical

Terms that appear in more technical contexts and expect the reader to have
some development background.

	[Plone Object] EestecMember

	A Plone object representing a single EESTEC member storing his personal
information.

	[Plone Object] LC

	A Plone object representing a single local committee. Based on it’s
workflow state it is defined whether it is a normal LC, or maybe a JLC
or Observer. LC is folderish and contains LC specific information such
as news, events, etc.

	[Plone Object] Event

	A Plone object representing a single EESTEC event, whether it is a
workshop, exchange, ECM, Congres, etc. It contains all relevant
information about an event. Event is folderish contains
EventApplications. Events are contained in LCs.

	[Plone Object] EventApplication

	A Plone object representing a single event application by an EESTEC
member. It can only be contained within a single Event. EventApplication
stores a relation to a member and so provides all necessary data about
the participant.

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

Technical Specification

Rules and Assumptions

	Rules and Assumptions
	First page

	Components folder

	Footer navigation

	LCs Folder

	LC titles

	Remember and self-registration

	Groups
	LC Group

	Administrators

	Board

	Roles
	CP

	Board

	LC

Use case

This diagram is displaying activities that different entities can take.

[image: ../_images/use_case.png]
Download UMLet source file.

Content Structure

Since Plone uses an object database (ZODB) rather than a traditional relational database (such as MySQL) all content are objects contained within parent objects. It’s best if you imagine this as folders and files on you local disc.

[image: ../_images/structure_diagram.png]
Download UMLet source file.

Class diagram

A Class diagram shows which objects we have in our data model and what are their relationships.

[image: ../_images/class_diagram.png]
Download UMLet source file.

Workflows

	Workflows
	Prelude

	LC workflow

	LC Content workflow

	Member workflow

	Event and EventApplication workflow

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Technical Specification

Rules and Assumptions

Some rules and guidelines we internally agreed on. Along with assumptions in code.

First page

We assume that there is a Page content type object in root of Plone site with id ‘what-is-eestec’. The source of this file should be handled with care as it’s divs have special ids, that show one part of content for anonymous and another part for authenticated users. Div with id ‘blob’ is displayed for anonymous visitors and ‘blob-login’ is displayed for authenticated members.

Components folder

This is a normal Plone folder with id ‘components’ residing in root of Plone site. Only managers have direct access to this folder. The folder contains components that are used as building blocks of the site. Example: collections for building footer sitemap, first page footer images, ...

Footer navigation

We have a collection that is listing child objects for every important top-level folder. We display these collections in footer with a little help of Products.ContentWellPortlets.

LCs Folder

This is a normal Plone folder that contains only LC content objects. All LCs must be added to this folder.

LC titles

LC’s do not have their status in the name of the LC. Their status is controlled by a custom workflow enabling different states: Inactive, Observer, JLC, LC. The actual presentation title is then build from the status of the LC and it’s name. Ergo, for LC name use just the city, do not prefix it with status.

Remember and self-registration

Since Plone 3.3.2 Remeber’s self-registration is broken: http://plone.org/products/remember/issues/64

We fixed this by going to http://eestec.net/portal_memberdata/manage -> click tab Security -> uncheck ‘Aquire security settings’ and check row Anonymous. Save.

Groups

LC Group

Each LC has a dedicated group for assigning LC specific permissions on portal object. When administrators create a new LC they must also manually create a group and assign local role “LC” for this group on the LC (this can later on be automatized but we now have more important issues to address). When Member object is created by the registration form this group is automatically assigned local role “LC” over the Member object, and member is added to LC Group (e.g. Ljubljana). This ensures that CPs have permissions over their LC’s members.

Administrators

Senior IT Team members with managerial permissions.

Board

International Board members with special permissions like approving event participants, etc. Boardies also have a dedicated private workspace on the site, where they can share documents, know-how, tasks, ...

Roles

CP

A member with this role has CP related permissions: adding events, accepting event applications, managing it’s LCs members, etc.

Board

A role for the Board group.

LC

A role that is assigned on LC object for the LC’s “LC Group”.

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Technical Specification

Workflows

Detailed descriptions of what workflows we use and the user story behind them.

Prelude

This document is primarily meant for developers on the eestec.net project. It’s also a recommended read for power users, such as CPs and the Board, as the reader gains valuable insight of the story behind eestec.net workflows and object relations.

The general purpose of the eestec.net portal is to standardize and enable EESTEC members to apply for events themselves and then track their application online, hence replacing the currently inefficient way of doing this though emails.

Note

Diagrams are made in UMLet. Their source files are below each of their screenshots.

Note

By default, workflow specifications for Plone are done in XML which get kind of hard to read when they grow. Luckily we can use a great tool called ‘collective.wtf’ that enables us to do workflow specification in CSV format in your favorite spreadsheet editor (Calc, Excel, etc.) making specifications much more readable and developer-friendly. Read more about it here (TODO: link).

LC workflow

We have different types of LCs: normal, junior, observer. Each of these types have some specific behaviour and permissions bind to them. To avoid creating separate content types for each of these types of LCs we’ll rather use workflows and one content type “LC”.

LC object starts it’s life cycle in state “pending” with only administrators being able to add new LCs to the site. Then administrator will check if all LCs fields are correctly set and will move LC’s state to a new one, either “LC”, “JLC” or “Observer”. Each of these workflow states will have special permissions bindings (Observers cannot add Events, ...).

[image: ../../_images/lc_workflow.png]
Download UMLet source file.

TODO: LC can only be created by dev.

LC Content workflow

All LC members can add default Plone content into their LC folder (news, pages, files, images, etc.). This content is not immediately visible by non-LC members and needs to be published first. CPs can publish such content with a single click. We’ll use default Plone publication workflow for this. TODO: link to plone.org explaining default workflows

Member workflow

We use Membrane/Remember framework for advanced member handling in Plone. Consequently it’s much easier to add new fields to a member object and bind workflows to them. Since we need a machinery for confirming newly registered members we’ll again use workflows. The default workflow that comes with Remember already supports this kind of user story and only minor customization is needed to suit our needs.

Member object starts it’s life cycle in state pending with anonymous user filling out the registration form. Based on LC selection on the registration form, respective CP is given permissions over the newly created Member object and can now approve it by moving it to state “active”. Upon approving, member receives an activation email and can now login to the site. There is one more state, which we’ll have to add manually, the “alumni” state. CP is again responsible for transition of member from “active” to “alumni”. All states also have a “disable” transition which disables the member, denying login for this member. Round trip from “disabled” back to “active” state is also supported.

[image: ../../_images/member_workflow.png]
Download UMLet source file.

Event and EventApplication workflow

Now here’s where the fun starts :). Events start their life cycle in state pending with CP adding a new Event object into it’s LC object. Then VC-IA comes along and confirms the Event which is now in state “open_for_applications”. An automatic email is sent to CP mailing list to inform everybody that we have a new Event members can apply to. Members also see this Event in the “upcoming events” listing. Upon opening a single Event members are presented with all information about an Event and an “apply for this event” button. This button creates an EventApplication in this Event. Organizer’s CP and Member’s CP are both notified about this via email.

Members are able to apply until the official application deadline. After the deadline, Organizer’s CP will “accept” or “reject” each pending EventApplication.

When Organizer is happy with accepted participants he puts the Event into next workflow state, ‘board_approval’. If Event is not put into board approval within 24 hours from the official deadline they are sent an email reminder to do so. VC-IA is notified of this.

An email is sent to VC-IA requesting him/her to login to the site and approve/reject all event applications for this Event. When VC-IA is happy with the list of approved participants, he/she moves the Event into state “confirmed”. All members, member’s CPs and organizer CP are notified that Event is confirmed and their application is approved.

[image: ../../_images/event_workflow.png]
Download UMLet source file.

[image: ../../_images/event_application_workflow.png]
Download UMLet source file.

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

Developers Guide

Conventions

Rules and guidelines on syntax style, development process, repository workflow,
etc.

	Conventions
	Line length

	About imports

	Sort imports

	Commit checklist

	Unit tests

	Syntax validation

	Changelog

	Sphinx Documentation

	Travis Continuous Integration

	Git workflow & branching model

Local development environment

Setting up and using the local development environment.

	Local development environment
	Prerequisites

	Creating the development environment

	Starting the portal

	Adding initial content

	Working on an issue

Remote development environment

Description of the remote development environment and how to use it for remote
development in cases when local development environment is not feasible.

	Remote development environment

Staging environment

Description of our staging environment and how to deploy code to staging.

	Staging environment
	Auto-deploying to staging

Production environment

Description of our production environment and how to deploy code to production.

	Production environment
	Auto-deploying to production

	Deployment checklist

	Reverting a bad deployment

Tips & tricks

Random development and deployment tips & tricks.

	Tips & Tricks
	Tunneling to ETHZ server

	Setting up Git

Source documentation

List of all Python modules in the eestec.portal package and their inline
documentation.

	Source Documentation

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Conventions

Line length

All Python code in this package should be PEP8 valid. However, we don’t strictly
enforce the 80-char line length rule. It is encouraged to have your code
formatted in 80-char lines, but somewhere it’s just more readable to break this
rule for a few characters. Long and descriptive test method names are a good
example of this.

Note

Configuring your editor to display a line at 80th column helps a lot
here and saves time.

Note

The line length rules also applies to non-python source files, such as
documentation .rst files.

About imports

	Don’t use * to import everything from a module.

	Don’t use commas to import multiple stuff on a single line.

	Don’t use relative paths.

from collective.table.local import add_row
from collective.table.local import delete_rows
from collective.table.local import update_cell

instead of

from collective.table.local import *
from collective.table.local import add_row, delete_rows
from .local import update_cell

Sort imports

As another imports stylistic guide: Imports of code from other modules should
always be alphabetically sorted with no empty lines between imports. The only
exception to this rule is to keep one empty line between a group of
from x import y and a group of import y imports.

from collective.table.tests.base import TableIntegrationTestCase
from plone.app.testing import login

import os

instead of

import os

from plone.app.testing import login
from collective.table.tests.base import TableIntegrationTestCase

Commit checklist

Before every commit you should:

	Run Unit tests.

	Run Syntax validation.

	Add an entry to Changelog (if applicable).

	Add/modify Sphinx Documentation (if applicable).

Note

All syntax checks and all tests can be run with a single command:

$ make tests

Unit tests

Un-tested code is broken code.

For every feature you add to the codebase you must also add tests for it. Also
write a test for every bug you fix to ensure it doesn’t crop up again in the
future.

You run tests like this:

$ bin/test

To speed things up, you can choose to run only some tests, not all at once.
Use the -t to filter out tests and run only those that match the expression.

run only setup tests
$ bin/test -t test_setup

Syntax validation

All Python source code should be PEP-8 valid and checked for syntax errors.
The tools used for this are flake8 and zptlint.

To validate your source code, run the following commands:

$ bin/flake8 src/eestec/portal
$ for pt in `find src/eestec/portal/ -name "*.pt"` ; do bin/zptlint $pt; done

or just this one (also runs all unit tests)
make tests

Note

It pays off to invest a little time to make your editor run flake8 on a
file every time you save that file. Saves lots of time in the long run.

Changelog

Feature-level changes to code are tracked inside docs/HISTORY.txt. Examples:

	added feature X

	removed Y

	fixed bug Z

Add an entry every time you add/remove a feature, fix a bug, etc.

Sphinx Documentation

Un-documented code is broken code.

For every feature you add to the codebase you should also add documentation
for it to docs/.

After adding/modifying documentation, re-build Sphinx and check how it is
displayed:

$ make docs
$ open docs/html/index.html

Documentation is automatically generated from these source files every time
you push your code to GitHub. The post-commit hook is handled by ReadTheDocs and
the results are visible at http://eestecportal.readthedocs.org/.

Travis Continuous Integration

On every push to GitHub, Travis [http://travis-ci.org/eestec/eestec.portal]
runs all tests/syntax validation checks and reports failures (if there
are any) to it@eestec.net mailinglist and to the #ngep IRC channel.

Travis is configured with the .travis.yml file located in the root of
eestec.portal package.

Git workflow & branching model

We only have one Python package for the entire portal, eestec.portal,
version controled by Git on https://github.com/eestec/eestec.portal.

Git repository has the following layout:

	feature branches: all development for new features must be done in
dedicated branches, normaly one branch per feature,

	master branch: when features get completed they are merged into the master
branch; bugfixes are commited directly on the master branch,

	tags: whenever we deploy code to production we tag the repository so we
can later re-trace our steps and revert broken deployments if necessary.

Hooks:

	On every change to the master branch, our Staging environment gets
re-deployed.

	On every new tag, our Production environment gets re-deployed.

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Local development environment

This section is meant for developers on the eestec.net project. It’s purpose is
to guide them through the steps needed to start contributing.

Prerequisites

System libraries

First let’s look at ‘system’ libraries and applications that are normally
installed with your OS packet manager, such as apt, aptitude, yum, etc.:

	libxml2 - an xml parser written in C

	libxslt - XSLT library written in C

	pcre - Perl regex libraly

	git - version control system.

	gcc - the GNU Compiler Collection.

	g++ - the C++ extensions for gcc.

	GNU make - the fundamental build-control tool.

	GNU tar - the (un)archiving tool for extracting downloaded archives.

	bzip2 and gzip decompression packages - gzip is nearly standard,
however some platforms will require that bzip2 be installed.

	Python 2.7 - Plone 4.2 does NOT work with other Python version so you need
this exact version.

	development headers for libxml2, libxslt and python

Python tools

Then you’ll also need to install some Python specific tools:

	easy_install - the Python packaging system (download
http://peak.telecommunity.com/dist/ez_setup.py and run
sudo python ez_setup.py.

	virtualenv - a tool that assists in creating isolated Python working
environments.

Code style guide

We use the plone.api style guide so please read it and use it:
http://ploneapi.readthedocs.org/en/latest/contribute/conventions.html

Further information

If you experience problems read through the following links as almost all of the
above steps are required for a default Plone development environment:

	http://plone.org/documentation/tutorial/buildout

	http://pypi.python.org/pypi/zc.buildout/

	http://pypi.python.org/pypi/setuptools

	http://plone.org/documentation/manual/installing-plone

If you are an OS X user, you first need a working Python implementation (the one
that comes with the operating system is broken). Use
https://github.com/collective/buildout.python and be happy. Also applicable to
other OSes, if getting a working Python proves a challenge.

Creating the development environment

Go to your home folder or a folder you use for development and clone latest
eestec.portal code:

[you@local ~]$ cd <your_work_folder>
[you@local work]$ git clone https://github.com/eestec/eestec.portal.git

Now cd into the newly created directory and create an isolated python
environment and build the development environment.

[you@local work]$ cd eestec.portal
[you@local eestec.portal]$ make

Internally, this uses zc.buildout to build Zope and any other servers we
might need, fetches all dependencies and installs them, generates config files
and scripts, prepares deployment tools and much more. Read more about buildout
at http://plone.org/documentation/tutorial/buildout:

While buildout is running go make some tea. When you run it for the first time
it needs a couple of minutes to finish preparing your development environment.
More if you have a slower Internet connection.

After make is finished your development environment is ready! You have
more make command on your disposal:

[you@local eestec.portal]$ make tests # run all unit tests
[you@local eestec.portal]$ make docs # generate documentation
[you@local eestec.portal]$ make clean && make # start from scratch

Starting the portal

Let’s start Zope - the application server. There are several ways to start Zope.
For development purposes we’ll use the ‘foreground’ mode which starts Zope in
console’s foreground so you can immediately see all debug messages and use the
Python Debugger to interactively debug your code:

[you@local eestec.portal]$ bin/instance fg

Once Zope has started you need to add a Plone site. Open up a browser and
point it to http://localhost:8080/@@plone-addsite?site_id=Plone. Username
is admin, password is also admin. Check the eestec.portal checkbox
in the Add-ons list and click Create Plone Site.

There you go, a local installation of the EESTEC portal on your laptop. Go
nuts with it!

You can also run our Unit tests or perform Syntax validation.

Adding initial content

If you don’t have a ZODB to work with, as in, you are starting with a fresh
install of Plone, follow this steps to add some content to your site so you
can see what your code does:

	Follow the Starting the portal instructions above.

	Use the Add new ... drop down menu to add a new LC.

	Once inside the new LC, use the Add new ... drop down menu again, this
time to add a new Event.

	Once inside the new Event, use the Add new ... drop down menu for the
last time, now to add a new Event Application.

	Use the State: drop-down menu to play around with different items’
workflow states.

Working on an issue

Out GitHub account contains a list of open issues [https://github.com/eestec/eestec.portal/issues]. Click on one that is labeled
with a green entry-level tag. If the issue description says No one is
assigned it means no-one is already working on it and you can claim it as your
own. Click on the button next to the text and make yourself the one assigned
for this issue.

Based on our Git workflow & branching model all new features must be developed in separate
git branches. So if you are not doing a simple bugfix, but rather adding new
features/enhancements, you should create a feature branch. This way your work
is kept in an isolated place where you can receive feedback on it, improve it,
etc. Once we are happy with your implementation, your branch gets merged into
master at which point everyone else starts using your code.

[you@local eestec.portal]$ git checkout master # go to master branch
[you@local eestec.portal]$ git checkout -b issue_17 # create a feature branch
replace 17 with the issue number you are working on

change code here

[you@local eestec.portal]$ git add -p && git commit # commit my changes
[you@local eestec.portal]$ git push origin issue_17 # push my branch to GitHub
at this point other can see your changes but they don't get effected by
them; in other words, others can comment on your code without your code
changing their development environments

Read more about Git branching at http://learn.github.com/p/branching.html. Also,
to make your git nicer, we have a Unit tests chapter in Tips &
Tricks.

Also please add your name to the
Changelog [https://github.com/eestec/eestec.portal/blob/master/docs/HISTORY.rst]

Once you are done with your work and you would like us to merge your changes
into master, go to GitHub to do a pull request. Open a browser and point it to
https://github.com/eestec/eestec.portal/tree/issue_<ISSUE_NUMBER>. There you
should see a Pull Request button. Click on it, wrote some text what you
did and anything else you would like to tell the on who will merge your branch,
and finally click Send pull request. Now wait that someone comes by and
merges your branch (don’t do it yourself, even if you have permissions to do
so).

An example pull request text:

Please merge my branch that resolves issue #13.

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Remote development environment

TODO: Using remote development environment @ Hetzner

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Staging environment

Auto-deploying to staging

On every change to the master branch, our development server builds a
staging environment with latest code on fresh live data. This is done
with a cronjob invoked script that does the following:

	Check if there were any changes from last time.

	Get latest changes.

	Run bin/buildout -c staging.

	Rsync Data.fs from the production server.

	Rsync blobstorage from the production server.

	Restart Zope.

Note

The script is invoked every 5 minutes.

Note

There is no need to purge the staging environment for every re-build
as we don’t need to test the entire build process – Travis already does
that for us.

TODO: How is staging server actually set up? Permissions
TODO: crontab script that I describe below doesn’t exist yet

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Production environment

Auto-deploying to production

Whenever a new tag is detected in our Git repository, our production server
fetches the latest tag and deploys it. This is done with a cronjob invoked
script that does the following:

	Check if there are any new tags.

	Backup Data.fs and blobstorage.

	Get latest tag.

	Run bin/buildout -c production.

	Restart all Zope servers.

Note

The script is invoked every 5 minutes.

TODO: How is production server actually set up? Permissions? What OS?
TODO: crontab script that I describe below doesn’t exist yet

Deployment checklist

As seen above, deployment to production is invoked by simply creating a Git
tag. To ensure everything goes smoothly, follow these steps:

	Checkout the code locally and run all tests.

	Bump version in version.txt and make sure HISTORY.txt has been
updated.

	Commit and push all changes.

	Confirm that the code works fine on live data on staging server.

	Create & push a tag: git tag -a v0.14 and git push --tags.

	Verify that production deployment went well.

Reverting a bad deployment

If a deployment goes bad you can easily revert to the previous tag and
pre-deployment database snapshot by running the following Fabric script:

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Tips & Tricks

Tunneling to ETHZ server

Sometimes you need direct access to services running on ETHZ server. All servers
are running on local address 127.0.0.2, and the ports for them are as
follows:

zope1 = 8091
zope2 = 8092
zope3 = 8093
zope4 = 8094
zope4_debug = 8099 (needs to be manually started with ``bin/zope_debug fg``)
zeo = 8090
haproxy = 8080
supervisor = 9000

So, to access (for example) zope_debug use:

$ ssh eestecwm@galen.ee.ethz.ch -L 8099:127.0.0.2:8099

Then open http://localhost:8099 in your browser and you will directly access
the service on this port.

Setting up Git

Git is a very useful tool, especially when you configure it to your needs. Here
are a couple of tips.

Enhanced git prompt

	Do one (or more) of the following:

	
	http://clalance.blogspot.com/2011/10/git-bash-prompts-and-tab-completion.html

	http://en.newinstance.it/2010/05/23/git-autocompletion-and-enhanced-bash-prompt/

	http://gitready.com/advanced/2009/02/05/bash-auto-completion.html

Example of ~/.gitconfig

[user]
 name = John Smith
 email = john.smith@gmail.com
[diff "cfg"]
 funcname = ^\\(\\[.*\\].*\\)$
[color]
 diff = auto
 status = auto
 branch = auto
[alias]
 st = status
 ci = commit
 br = branch
 co = checkout
[core]
 excludesfile = /home/jsmith/.gitignore
 editor = nano
[github]
 user = jsmith
 token = <token_here>

Example of ~/.gitignore

Compiled source
###################
*.com
*.class
*.dll
*.exe
*.o
*.so
*.lo
*.la
*.rej
*.pyc
*.pyo

Packages
############
it's better to unpack these files and commit the raw source
git has its own built in compression methods
*.7z
*.dmg
*.gz
*.iso
*.jar
*.rar
*.tar
*.zip

Logs and databases
######################
*.log
*.sql
*.sqlite

OS generated files
######################
.DS_Store
.DS_Store?
ehthumbs.db
Icon?
Thumbs.db

Python projects related
###########################
*.egg-info
Makefile
.egg-info.installed.cfg
*.pt.py
*.cpt.py
*.zpt.py
*.html.py
*.egg

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	eestec.portal 0.1 documentation

 	Developers Guide

Source Documentation

List of all Python modules in the eestec.portal package and their inline
documentation.

TODO: use sphinx.ext.autodoc to document code when we add it

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	eestec.portal 0.1 documentation

Index

 Symbols
 | C
 | E
 | I
 | J
 | L
 | M
 | O
 | V

Symbols

 	

 	[Plone Object] EestecMember

 	[Plone Object] Event

 	

 	[Plone Object] EventApplication

 	[Plone Object] LC

C

 	

 	CP (Contact Person)

E

 	

 	Event

 	

 	Event Application Deadline

I

 	

 	International Board

J

 	

 	JLC (Junior Local Committee)

L

 	

 	LC (Local Committee)

 	

 	Local Board

M

 	

 	Member of EESTEC International

O

 	

 	Observer

 	Observer Candidate

 	

 	Organizer

V

 	

 	VC-EA (Vice Chairperson for External Affairs)

 	

 	VC-IA (Vice Chairperson for Internal Affairs)

 Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_images/lc_workflow.png
Lc

@-creating new c]
‘Admin

[observer]

view: Anonymous
edit: Admin
add_content: LC Board
publish_content: LC Board
manage_events: LC Board

manage_members: LC Board

[promote to jic]

intBoard 1
[degrade fo_observer] view: Anonymous
Int Board H edit: Admin

add_content: LC Board
publish_content: LC Board
manage_events: LC Board

manage_members: LC Board

[promote to_lc] -

Int Board

[degrade to jic]

view: Anonymous

int Board

edit: Admin
add_content: LC Board
publish_content: LC Board
manage_events: LC Board

manage_members: LC Board

_static/down-pressed.png

_static/down.png

_images/event_workflow.png
f

1

1

'

fconfirm
1 LC Board LC Board

(create_event] (if all approve_reject)

LC Board [accept_more_participants]

LC Board

back to_open for_application] [cancel event]
‘Admin LC Board

[back to_choosing_participants]
‘Admin

[back to_pending]

Int Board
[cance| event]
LC Board

[cancel_event].
tback to_tonfimed]

LCBoard i

[cancel event]
T LC Board

_images/structure_diagram.png
B ot
ﬁpuhh([Folder)

T amews Folder
[—F"—10pen Day Newsitem]

[JEESTEC Hour Newsitem]

L&

—Ev;ls [Folder)
—@;&mau]

—Fabout [Folder]

T Jmembers (MemberConainer)
F—F72up0 (Member]

" ioni (Member]
L.

s (olaer]

[Ty tiubliana L]

F—F""JNew Years party! [Newsitem]
4@”“"“ My Web 5 [Event]
"7 duc (eventapplication]
—LJhusam [EventApplication]
L.

L.

HISTORY.html

 Navigation

 		
 index

 		eestec.portal 0.1 documentation »

Changelog

0.1 (unreleased)

		Memberdata fields.
[fakedrake]

		Event and EventApplication content types.
[iElectric]

		LC content type and forms.
[ibi, brodul, andrejpan]

		Theme skeleton.
[vilmoss]

		Bootstraping the package.
[iElectric, zupo]

 © Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

_images/use_case.png
cp

eestec.net

I Register

Ad

Promote LC_3
Approve event 3

hare private documents_>

Approve event application
Accept event application Xt

Publish LC content

d new LC 3

9

& View public information

1 View internal information

> Apply for event

st

|

2 View LC members

D\

1% Enable member

(_Add event

%
z
&
. E
8
S
z
2

Administrators

— @
| —

Board

Organizer's CP

search.html

 Navigation

 		
 index

 		eestec.portal 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

_images/event_application_workflow.png
to_event] [accept_participant]
LC Board

_lreject | [accept_pjarticipant]

reject| participant]
LC Board

LICENSE.html

 Navigation

 		
 index

 		eestec.portal 0.1 documentation »

License (3-clause BSD)

Copyright (c) 2012, EESTEC International.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

		Neither the name of EESTEC International nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL EESTEC INTERNATIONAL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright 2015, EESTEC International.
 Created using Sphinx 1.2.2.

_images/class_diagram.png
Folder L
«simple_publication_workflows dc_workflows
T T 1 I
0.1
o1 01 0.1 0.1
Page Newsltem Event
«simple_publication_workflow» «simple_publication_workflows event_workflows
T

MemberDataContainer

«<none »

T~

Member
«member_approval_workflows

EventApplication

«event_application_workflows

_images/member_workflow.png
[new!user]
anonymous

_static/minus.png

_static/comment.png

